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Executive summary

Market making has one objective, provide liquidity in exchange for a spread, yet the mechanisms, constraints,
and risks differ across three venues. In TradFi, queue position and inventory risk sit at the core of dealer
quoting models. In CeFi, crypto order books inherit the same math but add extreme volatility, venue frag-
mentation, and operational frictions. In DEXs, automated market makers replace quotes with an invariant,
which moves inventory risk into a continuous function of reserves and prices, introducing impermanent loss,
just-in-time liquidity, and MEV exposure. The theory of payoffs and inventory utility largely survives, the
microstructure and trust model change.

1 TradFi market making in limit order books

A standard reference is Avellaneda—Stoikov [I]. A dealer chooses bid and ask quotes to maximize expected
utility of terminal wealth with an inventory penalty. Let S; be the mid, 6°,5% the distances from mid, and
Ab@(§) the Poisson arrival rates that decay with distance. With exponential utility one obtains closed form
optimal quotes
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where ¢; is inventory, o is mid volatility, k is the order arrival slope, and + is risk aversion. Inventory loads
widen one side and tighten the other, queue priority rewards narrower quotes, and the spread trades off
adverse selection against inventory risk. See extensions with general mid dynamics and explicit inventory
penalties.

Market Making under Stochastic Volatility

Beyond the classical Avellaneda-Stoikov framework, which assumes constant volatility and Poisson order
arrivals, more recent work extends the optimal quoting problem to stochastic volatility regimes. Aydogan et
al. [3] formulate a market-making optimization problem in a limit order book where the midprice follows a
Heston process with potential jumps in both price and volatility.

They derive Hamilton—Jacobi-Bellman (HJB) equations under both quadratic and exponential utility
functions, characterizing optimal bid—ask spreads as feedback controls depending on volatility state, inventory,
and market order intensity. Numerical results show that higher volatility-of-volatility and jump components
widen optimal spreads, while faster mean reversion in volatility narrows them.

This work bridges classical LOB control with stochastic volatility modeling, providing a quantitative
baseline for extending inventory control to on-chain liquidity environments where volatility itself is protocol-
driven rather than purely exogenous.

2 CeFi crypto market making on centralized exchanges

Crypto CLOBs reuse the same dealer logic, but three features change the calibration problem.

Fragmentation and depth Liquidity splits across many venues and pairs, depth varies through the day,
and the removal of depth during shocks increases adverse selection and slippage relative to stationary back-
tests. Empirical work documents strong variation in book liquidity across crypto exchanges.



Volatility and inventory management Higher spot volatility widens optimal spreads and accelerates
inventory mean reversion, which reduces realized fill rates at tight quotes. Evidence points to wider spreads
on CEXs driven by volatility conditions.

Operational and data frictions Matching is off chain, funding and collateral are on chain, which creates
timing mismatches. Tick data and order book snapshots lack uniform standards, which complicates model
validation and backtesting.

3 Do CEX Market Makers Use Advanced Quantitative Models?

From a theoretical perspective, most academic models of market making such as Avellaneda—Stoikov, Guéant—
Lehalle-Fernandez, or HJB-based stochastic control formulations offer mathematically elegant frameworks
for inventory and spread optimization. However, their full implementation in live centralized exchange (CEX)
environments is rare.

Theory versus production reality

In practice, CEX market makers do not solve partial differential equations or stochastic control problems
in real time. Instead, they rely on simplified, data-driven approximations of the same principles. A typical
spread or quoting rule may be expressed empirically as

spread; = o + B ot + v g,

where oy is realized volatility and ¢; denotes current inventory. Such adaptive linear or nonlinear models
capture the intuition of optimal control without the computational burden.

What production systems actually optimize

Live CEX strategies focus primarily on execution efficiency and real-time risk aggregation. Key state variables
include:

e Inventory deltas per symbol and per venue,

e (Cross-exchange arbitrage spreads and funding costs,

e Order book imbalance and realized volatility filters,

e Latency and slippage metrics.
Rather than solving Hamilton—Jacobi—Bellman equations, firms use adaptive algorithms and reinforcement-
learning heuristics to update quoting behavior.
Why full models rarely survive in production

Several frictions limit the direct use of continuous-time models:

1. Computational constraints: HJB or stochastic volatility models are slow to evaluate and unsuitable
for millisecond reaction times.

2. Parameter instability: Estimated arrival intensities and volatilities vary rapidly across market
regimes.

3. Microstructure noise: Order arrivals on CEXs are non-Poissonian and heavily influenced by bots
and arbitrageurs.

4. Empirical pragmatism: Machine-learning models or rule-based systems perform more robustly under
uncertainty.



What remains from the academic models

Even though the mathematics is simplified, the conceptual grammar persists:

Utility maximization translates into adaptive risk control.

Arrival intensities become empirical fill probabilities.

Inventory aversion is implemented as penalized exposure or position caps.

Optimal spread formulas evolve into volatility-scaled quoting rules.

All in all

Crypto market makers rarely run Avellaneda-Stoikov equations in production, but they operate under its
spirit; continuously balancing fill probability, volatility, and inventory risk through empirical control rules.
The equations define the theoretical language of liquidity provision, even when expressed operationally as
data pipelines, regression models, or reinforcement-learning agents.

4 DEX market making with CFMMs and concentrated liquidity

On DEXs (like Uniswap), the market maker is an automated function. A constant function market maker
admits reserves z,y that satisfy a trading function ¢(z,y) = k. The constant product case is zy = k. Price
is the marginal rate of substitution p = 0,¢/0y¢p. General CFMM geometry and multi asset formulations
show that many invariants share common convex analytic structure.

Note: Most DEXs follow Uniswap’s CFMM logic, but alter the invariant, fee dynamics, or liquidity ge-
ometry to specialize for use cases. Uniswap is the model, others are parameterizations of the same functional
family

Uniswap v3 concentrated liquidity

Liquidity L is provided only on a price band, which creates option like exposures. Outside the band, the
position is fully converted to one asset, inside the band the delta equals the slope of the reserve curve for the
active ticks. Empirical and theoretical studies analyze fees, returns, and liquidity surface dynamics under
concentration. [9]

Impermanent Loss and Fee Compensation

Impermanent loss (IL) represents the opportunity cost faced by a liquidity provider (LP) in a constant product
automated market maker (AMM) relative to a passive “buy-and-hold” portfolio of the same two assets. It
arises because the AMM continuously rebalances inventory to maintain the invariant

ry =k,

where x and y denote the reserves of the two tokens, and k is the invariant constant. This rebalancing changes
the LP’s asset composition as market prices move, causing the portfolio value to diverge from that of simply
holding the assets.

Let:

e Pyq = initial price of the risky asset (in units of the quote asset),

Poew = price after a price change,

o 7 = Phow/Poqa = relative price change (price ratio),

Vamm(r) = LP portfolio value after rebalancing at ratio r,

e VhopL(r) = value of the initial “buy-and-hold” portfolio at ratio 7.



For a two-asset constant product AMM without trading fees, the relative value difference (impermanent loss)

is
_ Vamm(r) - 2\/r _
ViopL(7) 1+7
This expression is negative whenever r # 1, meaning that any price deviation from the entry price produces

a loss relative to holding the assets separately. The loss magnitude increases with price volatility, reflecting
the LP’s short converity (short gamma) exposure.

IL(r)

Incorporating trading fees. Most AMMs compensate LPs with trading fees proportional to traded vol-
ume. Let feeRate denote the per-trade fee and flow(¢) the traded notional per unit time. The cumulative fee
income over an interval [0, 7] is

T
Fees(T) = / feeRate x flow(t) dt.
0
The realized LP profit-and-loss (PnL) becomes
PHL(T) = Fees(T) + VAMM(T’T) — VHODL(TT)7

where the second term captures impermanent loss. Profitability depends on whether fee income offsets this
curvature-induced loss. Empirically, this balance hinges on trade frequency, volatility, and the cross-sectional
mix of flow directions.

Recent quantitative results. Analytical and empirical studies [I1] show that expected LP returns can
be decomposed as

1
E[PnL] ~ E[Fees] — J Teg o?T,

where Tt denotes the AMM’s effective curvature exposure and o? the variance of the underlying asset price.
This formulation parallels the gamma exposure of short-option positions: LPs earn fee income akin to option
premium but incur convexity loss as prices move away from the entry ratio. The profitability threshold occurs
when fee-induced drift compensates the volatility-driven convexity cost.

Just in time liquidity and MEV

Liquidity can arrive for a single swap then leave, which transfers fees from passive LPs to strategic LPs and
changes fee incidence. Recent studies formalize JIT behavior and its impact on passive LP profits. MEV
further alters expected execution for traders and LPs, through reordering and sandwich effects.

Strategic Liquidity Provision in Uniswap v3

Recent quantitative research has formalized the dynamic problem faced by LPs in Uniswap v3 as one of
optimal stochastic control under reallocation costs. Fan et al. [§] model liquidity providers as agents choosing
interval widths and rebalancing frequencies to maximize expected utility of terminal wealth subject to trading
and gas costs. The authors define families of 7-reset strategies, where liquidity is concentrated in a price
band and reallocated only when prices exit that range.

Empirical simulations based on Ethereum price paths show that dynamic, context-aware reallocation
strategies can substantially outperform static or uniform allocations. Risk-averse LPs tend to spread liquidity
over wider intervals, while low-cost or high-volatility environments favor narrow, frequently rebalanced ranges.
The results confirm that Uniswap v3 behaves as a *continuous-time stochastic optimization environment*,
where gas costs, volatility, and flow composition jointly determine optimal liquidity curvature.

From a quant perspective, this reframes AMM provision as an optimal control problem analogous to
inventory models in market making, but with endogenous execution costs and algorithmic clearing.

Liquidity Fragmentation and Economies of Scale in Decentralized Exchanges

While Fan et al. [§] model liquidity provision as an optimal stochastic control problem, Lehar, Parlour,
and Zoican [7] provide a complementary perspective by documenting the equilibrium implications of fixed
transaction costs on decentralized exchanges.



Their model demonstrates that gas fees create economies of scale, driving heterogeneity among liquidity
providers. Large, capital-rich LPs optimally concentrate in low-fee pools where trading is frequent, liquidity
cycles are short, and fee income compensates for high adjustment costs. Smaller, retail LPs migrate toward
high-fee pools where liquidity updates are infrequent and gas costs represent a smaller share of expected
profits.

Using data from over 13 million Uniswap v3 transactions between May 2021 and September 2022, the
authors find that high-fee pools attract about 56% of total liquidity but execute only 35% of volume. In
contrast, low-fee pools handle most trading flow but involve fewer, larger LPs. Gas price shocks exacerbate
fragmentation: a one standard deviation increase in gas prices reduces low-fee pool market share by roughly
2.3 percentage points and cuts liquidity inflows by more than a third.

From a quantitative standpoint, their results illustrate that liquidity provision in Uniswap v3 exhibits a
structural segmentation similar to that between institutional and retail market makers in traditional limit
order books, with blockchain transaction costs acting as a novel form of inventory friction.

5 Comparison: objective same, state variables differ

Venue Control Variable Dominant Risks

TradFi CLOB  Quote distances, inventory Adverse selection, queue position,
target inventory variance.

CeFi CLOB Same as TradFi, plus venue Depth evaporation, latency, data
selection quality, venue fragmentation.

DEX CFMM Fee and range placement, lig- Impermanent loss, JIT competition,
uidity size oracle quality, MEV exposure.

Table 1: Comparison of market making mechanics and dominant risks across venues.

6 Calibration and validation checklist

e TradFi and CeFi: estimate arrival rate elasticity k, volatility o, and inventory penalty from fills versus
distance to mid, with venue specific depth models. Benchmarks include Avellaneda—Stoikov and its
extensions.

¢ DEX: estimate fee income conditional on flow and price path, compute IL path functionals, and perform
counterfactuals with and without JIT arrivals. Use CFMM geometry for sensitivity and bounds.

e Stress tests: apply volatility shocks, depth withdrawal in CeFi, and fee or oracle latency shocks in
DEXs. Consider MEV reordering scenarios for DEX execution quality.

Takeaways

The dealer utility framework still guides spread and inventory decisions. In crypto, the inputs are regime
dependent. CeFi inherits limit order book behavior with larger volatility and fragmented depth. DEXs
replace quotes with an invariant, which shifts the edge calculus from queue priority to curve selection, fee
design, and protection against MEV and JIT behavior. Model success depends less on closed form elegance
and more on microstructure aware calibration and stress design.
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