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Abstract

Value-At-Risk plays a central and prominent role in risk management and there exist several
methods to estimate it. From historical simulation to GARCH models and variance-covariance
methods and so on. In fact, the report provides overall results of each approach and for different
mono-asset and multi-asset portfolios using a range of crypto-currencies and exchanges. To
check the goodness of fit of the approaches, backtesting methods are used. On the other hand,
we conclude the report with different use cases of the VaR to hedge one’s portfolios and minimise
the losses.
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Chapter 1

Notations

• Vt is the value of the whole portfolio whether it’s a mono-asset or a multi-asset one.

• P i
t is the value of the asset i in the portfolio at time t.

• δit is the quantity of the asset i at time t.

• wi
t is the weight of the asset i at time t.

• P&Lt = Vt − Vt−1.

• Xt+1 = −P&Lt+1 = Vt − Vt+1 represents the loss of a portfolio between time t and t+ 1.

• Ft is a σ-algebra on Vt, Ft = σ(P i
0, ..., P

i
t , 1 ≤ i ≤ n) where n is the number of the assets

in the porfolio. It holds the information available at time t.

• Yt is a variable that designates a type of returns between t− 1 and t, see (2.8).

• qβt (Yt+1) is a β-quantile of the return Yt+1 conditional to Ft:

qβt (Yt+1) = −q1−β
t (−Yt+1)

where qβt is defined in (2.4).

• V aRα
t is the Value-at-Risk of the portfolio loss at risk level α ∈ (0, 1), conditionally to

the information available at time t: this is defined by

V aRα
t (Xt+1) := qαt (Xt+1) = qαt (Vt − Vt+1).

We will typically consider α = 95% so that we expect the quantity to be positive.

• Zt is the innovation process.

• µt+1|t is the conditional mean of the returns (specified beforehand) at time t, i.e. µt+1|t =
E(Yt+1|Ft)

• σt+1|t is the conditional volatility of the returns (specified beforehand) at time t, i.e.
σt+1|t = V(Yt+1|Ft).
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Chapter 2

Introduction

The question why to choose to do an internship at the crypto company named Kaiko instead of
a traditional one has been asked several times especially when we think about the whole contro-
versy and uncertainty around the Crypto world. I’ll begin answering that with an introduction
of Kaiko and eventually a little story of money.

2.1 Kaiko

Kaiko is the leading source of cryptocurrency market data, providing businesses with in-
dustrial grade and regulatory compliant data. It empowers market participants, institutional
investors, leading academic institutions, as well as enterprises in the digital finance industry, like
Chainlink, Bank of Canada, Bloomberg, Uniswap, Deutsche Borse Group with global connectiv-
ity to real-time and historical data feeds across the world’s leading centralized and decentralized
cryptocurrency exchanges. Kaiko’s mission is to bridge traditional and blockchain ecosystems
by providing reliable and actionable financial data and services. its proprietary products range
from portfolio valuation to strategy backtesting, performance reporting, charting, analysis,
indices, pre- and post-trade.

Kaiko covers over 100 crypto centralised and decentralised exchanges and have over 10
years of historical market data. Their data ranges between trade data, to order book data and
quantitative data.

As a quantitative analyst, I’ve worked for six month within the analytics department with
a team of three people: Anne-Claire Maurice, Emmanuel Gobet Mnacho Echenim and Theo
Lafitte.

2.2 Why The Crypto World ?

This section is purely the opinion of the author and is independant from the internship topic
and does not reflect the views of Kaiko.

Money has always been the center of the human story with its several functions in different
communities and has been represented in different material forms in the past 10000 years, go-
ing from grains to cattle and metal coins to seashell and paper or just numbers in your bank
account. The concept of money has gone through several big events too: we can recall the
period when it was deriving its value from a commodity to the Nixon Shock in 1971. One
characteristic that seemed quite dominant from the late 17th century with the monopolisation
in ancient Rome and the birth of the Bank of England up to now is the centralisation of money.
In other words, the existence of a central authority that governs money and decides how ev-
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erything related to it is managed.

There are obviously many advantages to this monetary system, among those, it’s worth
mentioning the effective control and supervision. Also, the fact that every job in the organi-
zation that requires specialists can be trained thanks to centralized office organization, which
also helps to standardize work. Naturally, when operations are centralized, they will either be
in the hands of one person or a group of people, but they will still be directly under his or
her supervision. As a result, activities will be more consistent, resulting in consistent decision-
making and processes which also results in no duplication of work.

However, there’s a very controversial political philosophy called Libertanism which seeks
to maximize autonomy and political freedom, and minimize the state’s encroachment on and
violations of individual liberties. In fact, libertarians have a deep distrust of centralised state
power and try to limit the government interventions since they believe that centralised financial
institutions are the major cause of the greatest economic crisis along with the inflation that
is considered to be the result of the government mismanagement of the supply of money and
a big torture to humanity. As a consequence, we have witnessed a significant amount of rev-
olutionary technologies such as the Internet whose infrastructure is completely different from
anything invented before. This latter exists in both the real world and a separate realm within
cables and electricity which removed all communication barriers, creating an open world with
easy, instant and endless communication.

According to the Libertanians, there are some drawbacks that are noteworthy and that con-
stitute the base for a new technology to emerge. As a matter of fact, the money centralisation
destroys individual initiative since it revolves around one small entity. In other words, one
man takes all the decisions and decides the modes of implementing them despite the glaring
fallacies. Adding the fact that this type of decision making triggers some kind of distance from
the customers or the people in general which limits creativity and communication. Further-
more, the fact that it gives all responsibilities to few people in the organization causes them to
remain over-burdened with routine work and slow down the operations which is not the most
time-optimised system. Besides, we can mention the lack of secrecy. In fact, in a centralized
system, secrecy cannot be upheld because the government can have access to anyone’s bank
account information.

The internet has opened the possibility of new type of money that removed the centralised
entities interventions and enabled people to have a secure and private transaction that requires
no bank permission, no ID and no delays. This is a crucial life changing money system, espe-
cially when we observe that more than 1.7 billion people in the world have no access to a bank
account whereas you can have a digital wallet in a minute with only two things: a laptop and
WiFi connection. Nonetheless, it is true that the internet is nothing more but connected cables
that can be shut down in some particular or extreme incident (like the wars). Thus, find one-
self unable to access their money which is something unlikely to happen in a centralized system.

The internet money has been baptised: crypto-currency and it operates within the so-called
blockchain technology. The blockchain can simply be illustrated as a list of transactions in
chronological order, held in blocks tied together in a chain. All the transactions are public but
anonymous thanks to the power of cryptography. The first blockchain ever created was Bitcoin
(also the name of the crypto-currency) back in 2009 by Satoshi Nakamoto. Nowadays, we count
more than 10, 000 crypto-currencies and several blockchains.
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Additionally, the global crypto-currency market size was valued at $1.49 trillion in 2020 and
soared to an all-time high, reaching a market cap of $3 trillion. Obviously, this is a drop in
the bucket compared with the U.S. stock market’s $48 trillion value. Nonetheless, for an asset
class that was little more than a decade old, it was significant. In fact, the crypto-currency
market is expected to witness promising growth in the coming years owing to improved data
transparency and independency across payments in banks, financial services, insurance and
so on. Moreover, the market is getting more and more regulated and thus more trusted by
investors since regulation protects them from fraud and other risks.

Figure 2.1: Crypto Market Cap from April 2013 to September 2022

Finally, it’s impossible to ignore the consequences of the emergence of bitcoin: the cre-
ation of Decentralised Finance (DeFi) which is a financial system that is open to everyone and
minimizes the need to trust and rely on a central authority, the appearance of the Initial coin
offerings (ICOs) which are a popular way to raise funds for products and services usually related
to cryptocurrency, Web3 (a new iteration of the World Wide Web which embodies concepts
such as decentralization, blockchain technologies, and token-based economics), Decentralized
autonomous organization (DAO) and so on.

All in all, as far as I’m concerned, it makes sense to view DeFi and conventional, centralized
banking infrastructure as rival or conflicting forces. But in reality, collaborating and working
together in the future is their greatest option. By reducing the barriers and silos connected to
centralized finance, DeFi may aid currency institutions in becoming more resilient. Besides, I
see the crypto and blockchain world as a golden opportunity for research, experimentation and
innovations and discover how different the two worlds are mathematically speaking.

2.3 Value-at-risk: Definition

Investors and traders are getting more and more interested in the crypto world, there is now
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Figure 2.2: Traditional vs. DeFi finance in the lending space scenario

more than ever, a need for instruments for risk management to prevent major losses since the
the most concerning aspect of this new technology is the high volatility of crypto-currencies
(whose volatility can vary from 70% to 200%) compared to traditional finance (15 per cent on
average at least for equities and indexes).

Modern financial markets have identified several major kinds of risk: credit risk, operational
risk, liquidity risk, and market risk. In recent years, researchers and market practitioners have
paid more attention to Value-at-Risk (VaR) for the analysis of market risk. The VaR was
widely used in trading portfolios to measure market risk in the 1990s. Its origins can be traced
back to 1992, when the New York Stock Exchange imposed capital requirements on member
firms. It has its origins in portfolio theory, as well as a crude VaR measure published in 1995.

This statistical technique is used to estimate the maximal amount (in dollars) that can be
lost by a portfolio, over a period of time or future time horizon, and for a given risk level. In
other words, there are three key elements to describe the Value at Risk (VaR): the time period
over which the risk is assessed, the risk level and the dollar amount of VaR. Typically, assume
the 95% daily VaR of my portfolio is $100k. This can be interpreted in two equivalent ways:
my portfolio has 5% chance of losing as least $100k over the next one-day period or on average,
my portfolio will lose at least $100k, once every 20 days.

Mathematically speaking, the value-at-risk is a statistic that is used to forecast a great
possible losses over a certain time period under a certain probability. It is computed across
various confidence levels on either simulated or historical data.

We consider losses P&L of a portfolio over a certain time horizon and we define:

Xt := −P&Lt, (2.1)

P&Lt = Vt − Vt−1 (2.2)

where t > 0 and the P&Lt is computed between times t − 1 and t. A loss means a positive
Xt. Intuitively, the VaR represents the threshold above which losses (with changed sign) occur
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with probability at most α. It should be computed conditionally to Ft where (Ft : t ≥ 0) is the
filtration modelling all the information available at different times t.

Figure 2.3: Example of c.d.f. as a function of x, and related values of qα(qi) = pi for different
probability levels pi

Definition: (For a general reference on VaR, see [Sto11] and [AJME15])
Denote by Ft the cumulative distribution function (c.d.f.) of Xt+1, conditionally to the available
information represented by Ft t ≥ 0:

Ft(x) := P(Xt+1 ≤ x|Ft), Ft := σ(P i
0, ..., P

i
t , 1 ≤ i ≤ n) (2.3)

where n is the number of the assets in the portfolio and P i
t the price of the asset i at time t.

The VaR at the confidence-level α is the lower α-quantile of the conditional distribution of
Xt+1 is defined by:

V aRα
t (Xt+1) := qαt (Xt+1) = inf{q : Ft(q) ≥ α}, (2.4)

qαt (Xt+1) = −q1−α
t (−Xt+1) (2.5)

where 0 < α < 1.

Important remark: We typically consider the risk level α = 95% or 99% instead of 5%
and 1% so that we expect the quantile to be positive.

On the other hand, it is obvious that V aRα
t (Xt+1) is an increasing function of α.

VaR Decomposition:

Let us introduce the first two moments of Xt+1 conditional on Ft, the information available
at time t:

µt+1|t = Et(Xt+1|Ft),

σ2
t+1|t = Vt(Xt+1|Ft).
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Figure 2.4: VaR is the β-quantile of the conditional loss distribution (left). The righthand
graph displays the VaR as a function of β ∈ [1%, 5%] for Gaussian distribution (solid line),
a Student t distribution with 3 degrees of freedom S (dashed line) and a double exponential
distribution E (thin dotted line). The three laws are standardized so as to have unit variances.

Suppose that:
Xt+1 = µt+1|t + σt+1|t ×X∗

t+1 (2.6)

where X∗
t+1 is a standardized (conditionally centered, unit variance) random variable with cu-

mulative distribution function G.

Generally speaking, G is time dependant. However, in this hypothesis, since X∗ is centered
with a unit variance, we consider that the dependence is all contained in the conditional mean
and the conditional variance.

Denote by G̃ the quantile function of the variable X∗
t+1. If G̃ is continuous and strictly

increasing, we simply have: G̃ = G−1, where G−1 is the ordinary inverse of G. In view of (2.4)
and (2.6) it follows that:

P
(
V aRα

t (Xt+1) ≥ µt+1|t + σt+1|tX
∗
t+1

)
= α = G

(
V aRα

t (Xt+1)− µt+1|t

σt+1|t

)
Consequently,

V aRα
t (Xt+1) = µt+1|t + σt+1|t × G̃(α). (2.7)

VaR can thus be decomposed into an ‘expected loss’ µt+1|1, the conditional mean of the loss,

and an ‘unexpected loss’ σt+1|1G̃(α), also called economic capital.

On the other hand, it is sometimes more interesting to compute the quantile on variations
other than losses. Traditionally, besides the P&L, there are two other ways of computing
portfolio variations: arithmetic returns (AR) and log returns (LR). In this case, we finally
compute the VaR after finding the relationship between V aRα

t (Xt+1) and qαt (Yt+1) where Yt+1 ∈
{ARt+1,LRt+1}.

ARt =
P&Lt

Vt−1

, LRt = log(
Vt

Vt−1

) (2.8)

where Vt the value of the portfolio at time t.
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2.4 Data

As far as the data is concerned, we focus only on historical real data starting from January
2019 to June 2022. We collect the prices of nine crypto-currencies: BTC, ETH, XRP, LTC,
LINK, MATIC, DOT, SOL and ADA by extracting 5:30 pm asset prices of each day using all
the centralised and decentralized exchanges from the Kaiko Database between January 2019
to June 2022. However, for some crypto-curencies like MATIC for example, their prices only
start at august 2020. This is not a bothering issue since we use one year of historical data to
generate daily Value-at-Risks. For example: we use one year data from August 2020 to August
2021 and generate daily VaRs from September 2021 to June 2022.

On the other hand, we simulate two type of portfolios:

• Mono-asset: containing exactly one asset for example 1 BTC.

• Multi-asset portfolio: by putting equal weights on the chosen cryptos based on an initial
investment, i.e. wi =

1
n
where n is the number of the assets of the portfolio and wi is the

weight of the asset i.

Moreover, it is crucial to point out that the portfolio is static and will never be rebalanced.

Examples of different portfolios:

Figure 2.5: Mono-Asset Portfolio evolution

From the graphs, we notice different regimes: a still one from 2019 to the end of the year,
a soaring one from the beginning of 2021 and the third and the plunging one from the end
of January 2022. In fact, the crypto market is evolving very quickly and can switch from a
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Figure 2.6: Multi-Asset Portfolio evolution

Coins BTC ETH LTC
Quantities 0.895 24.70 109.56

Table 2.1: Quantities of the asset of the multi-asset portfolio

market regime to another in few weeks. One of the main goals of this study is to catch sight
of the behaviour of different VaR methods moving from a regime to another. In other words,
this point is very interesting for the computation of the different VaRs to see which approach
captures the change in the portfolio’s pattern.
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Chapter 3

Methodologies

There are three kinds of methods traditionally used to estimate the Value-at-Risk: non-
parametric methods, parametric methods and semi-parametric methods.

• The non-parametric approach uses actual historical data, it is simple and easy to use.
There is no hypothesis about the distribution of the data.

• Parametric methods are calibrated on the observed data (usually two models, one for the
mean and one for the variance). Closed-form formulas for the quantile are then derived,
or Monte-Carlo simulations are used to estimate the quantile.

• Semi-parametric methods are a hybrid method that combines the two first ones. Only a
part of the model is parametric and the rest is non parametric.

On the other hand, it’s important to also distinguish two categories of approaches: the one
that considers the entire value of a portfolio and the one that considers the portfolio’s assets
value. In this latter, we are interested in the correlation between the coins rather than just the
actual worth of the entire portfolio.

To develop these methodologies, we start by listing some facts about crypto portfolios:

• We don’t have much historical data. Sometimes on traditional finance, up to a decade
is used to compute VaR and backtest it. Something that we don’t have in the crypto
finance. In fact, we use only three years of data.

• The market is evolving very quickly and can switch from a market regime to another in
few weeks as seen in 2021-2022 when the value of most of cryptos lossed 70% of their
value in two months.

• The volatility of cryptos is much higher than that of traditional assets.

3.1 Historical Simulation Method

Historical simulation is the most popular and also the simplest method among all the ap-
proaches in terms of implementation and understanding. It’s a non-parametric approach that
uses specific historical returns (daily variations, arithmetic yield and so on) to construct the
cumulative distribution function. In fact, there is no assumptions made on the distribution of
the historical returns unlike the parametric approaches. This method consists in replacing the
theoritical quantile by an empirical quantile computed on the past data, over a rolling period.
It is in fact an entirely data-driven method with no assumptions made about the model. In
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general, this approach requires a long history of returns in order to get a meaningful VaR but
in our case we only use one year of returns data.

The first step lies in setting the time interval and then calculating the returns (log returns,
daily variations and so on) of the portfolio. Then, compute the quantile related to the risk level
based on the returns distribution. For example a 0.95 quantile if we want to compute the 95%
confidence level value-at-risk.

The mathematical formulation of the VaR changes based on the choice of the returns.

• if we use the arithmetic returns:

V aRt
α(Xt+1) = V aRt

α(Vt − Vt+1) = Vtq
α
t (−

Vt+1 − Vt

Vt

) = Vtq
α
t (−ARt+1) = −Vtq

1−α(ARt+1),

because Vt is Ft-measurable.

• if we use the losses Xt+1 = −P&Lt:

V aRα
t (Xt+1) = qαt (Xt+1) of the equation (2.4)

where Vt is the value of the portfolio at time t, qαt is the α-quantile calculated using the
returns and Xt+1 the portfolio loss between t and t+ 1.

3.2 ARMA-GARCH Models Method

For a better understanding of the ARMA and GARCH models, let’s first introduce the location
scale approach. A probability distribution can be characterized by location and scale param-
eters. Location and scale parameters are typically used in modeling applications, that can be
defined as:

Yt+1 = µt + σtZt+1 (3.1)

Where Yt+1 and Zt+1 are random variables, µt is the mean, σt the volatility process. All these
variables follow series of different models.
For example, the probability density function for the standard normal distribution, which has
the location parameter equal to zero and scale parameter equal to one.

3.2.1 Stationarity

Stationarity means that the statistical properties of a process generating a time series do not
change over time. It does not mean that the series does not change over time, just that the
way it changes does not itself change over time. A stationary process is mean-reverting, i.e, it
fluctuates around a constant mean with constant variance. Besides, there exist two types of
stationarity: the weak form and the strong form.

Weak stationarity is when the time-series has constant mean and variance throughout the
time. It only requires the shift-invariance (in time) of the first moment and the cross moment
(the auto-covariance). Formally, the process {Xt; t ≥ 0} is weakly stationary if:

• The first moment of Xt is constant; i.e. ∀t, E(Xt) = µ.

12



Figure 3.1: Illustration of stationary and non stationary time series

• The second moment of x is finite for all t; i.e.∀t, E[X2
t ] < ∞ (which also implies of course

E[(Xt − µ)2] < ∞; i.e. that variance is finite for all t).

• The cross moment — i.e. the auto-covariance depends only on the difference u − v; i.e.
∀u, v, a, (Xu, Xv) = cov(Xu+a, Xv+a).

Strong stationarity is when the distribution of a time-series is exactly the same trough
time. requires the shift-invariance (in time) of the finite dimensional distributions of a stochastic
process. This means that the distribution of a finite sub-sequence of random variables of the
stochastic process remains the same as we shift it along the time index axis. For example, all
i.i.d. stochastic process are stationary. Formally: {Xt; t ≥ 0} is stationary if:

F (Xt1+τ , ..., Xtn+τ ) = F (Xt1 , ..., Xtn)

Why is stationarity needed ?

Stationarity is an important concept in the field of time series analysis with tremendous
influence on how the data is perceived and predicted. When forecasting or predicting the fu-
ture, most time series models assume that each point is independent of one another. The best
indication of this is when the dataset of past instances is stationary. In other words, a station-
ary time series gives the property of time-independence. Thus, time series with trends or wit
seasonality will affect their value at different time and therefore leads to unreliable forecasting.

The most basic method for stationarity detection rely on plotting the data, and visually
checking for trend and seasonal components. This is mostly a dubious task. However, statisti-
cal tests provide a quick check and confirmatory evidence that the time series is stationary or
non-stationary. They can only be used to inform the degree to which a null hypothesis can be
rejected or fail to be rejected. One of the most popular tests is the Augmented Dickey-Fuller
test which is used through the function adfuller from statsmodels library in python. The value
of p-value is used to determine whether there is stationarity. If the value is less than 0.05, the
stationarity exists.
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3.2.2 VaR Computation

Let Yt be a strictly stationary time series representing daily observations of the portfolio’s log
returns and following a location scale model. Let Qα

t the quantile on log-returns.

Yt+1 = µt+1|t + σt+1|tZt+1 (3.2)

Qα
t = µt+1|t + σt+1|tq

α
t (3.3)

where:

• Zt+1 is called the innovation process allowed to follow one of the three distributions:
normal, t-Skewt and t-Student.

• µt+1|t is the conditional mean (could be zero, constant or an ARMA(p,q) model i.e. an
auto-regressive moving average process).

• σt+1|t is the conditional volatility process that is estimated using the most popular GARCH
models: GARCH(p,q), EGARCH(p,q) and APARCH(p,q) existing in the well-known
arch model python library.

• qαt is a quantile of either the chosen innovation process distribution or the log-returns
distribution.

We assume that µt+1|t and σt+1|t are measurable with respect to Ft that holds information
about the return process available up to time t.
Furthermore, qα is computed using two different methods: parametric and semi-parametric
approaches. In fact, we are interested in estimating quantiles in the tails of either the three
distributions mentioned beforehand or using the one year log-returns data. This latter is similar
to the historical simulation. Therefore, in this case the GARCH-VaR would be considered a
semi-parametric method.

3.2.3 VaR Formulation

Finally, since we are using the log returns in this methodology, we need to reverse the VaR
formula, i.e. we use the following equation: qαt (ϕ(L)) = ϕ(qαt (L)), if ϕ is C0 and increasing and
L a random variable.

V aRα
t (−Vt+1 + Vt) = −q1−α

t (Vt+1) + Vt

= −q1−α
t

(
elog(Vt+1)

)
+ Vt

= Vt

(
1− eq

1−α
t (LRt+1)

)
= Vt

(
1− e−qαt (−LRt+1)

)
.

Thus:

V aRα
t (Xt+1) = V aRα

t (−Vt+1 + Vt) = Vt

(
1− eQ

1−α
t

)
. (3.4)

Remark: We consider thatQα
t = q1−α

t (LRt+1) demonstrated in VaR decomposition section,
equation (2.7).
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3.2.4 Mean Models

Apart from a constant or zero mean, we can also use another approach to get a more accurate
value of µt+1|t. We cite three different models: AR(p), MA(q) and lastly ARMA(p,q). For
general reference on ARMA models see [WIN].

The general ARMA model was described in the 1951 thesis of Peter Whittle, Hypothesis
testing in time series analysis, and it was popularized in the 1970 book by George E. P. Box
and Gwilym Jenkins. The ARMA model is a tool for understanding and, perhaps, predicting
future values in this series. The AR part involves regressing the variable on its own lagged (i.e.,
past) values. The MA part involves modeling the error term as a linear combination of error
terms occurring contemporaneously and at various times in the past. The model is usually
referred to as the ARMA(p,q) model where p is the order of the AR part and q is the order of
the MA part (as defined below).

Remark: For the sake of simplicity, we denote by µt the conditional mean µt+1|t.

Autoregressive Model (AR): The autoregressive model specifies that the output variable
depends linearly on its own previous values and on a stochastic term (an imperfectly predictable
term). Thus the model is in the form of a stochastic difference equation. The order of an
autoregression is the number of immediately preceding values in the series that are used to
predict the value at the present time. The order q of the AR model can usually be estimated
by looking at the ACF plot of the time series.

µt =

p∑
i=1

ϕiµt−i + ϵt

where: (ϕi)1≤i≤p are parameters and ϵt is white noise, usually independent and identically dis-
tributed (i.i.d.) normal random variables.

In order for the model to remain stationary, the roots of its characteristic polynomial must
lie outside of the unit circle.

Moving-average Model (MA): The moving-average model is essentially a finite impulse
response filter applied to white noise. It is a time series model that accounts for very short-
run autocorrelation. It basically states that the next observation is the mean of every past
observation. The order of the moving average model, q, can usually be estimated by looking
at the ACF plot of the time series.

µt = c+

q∑
i=1

θiϵt−i + ϵt

where: (θi)1≤i≤q are the parameters of the model, c is the expectation of µt (often assumed
to equal 0) and ϵt are again, i.i.d. white noise error terms that are commonly normal random
variables.

ARMA Model:

The ARMA model is essentially an infinite impulse response filter applied to white noise,
with some additional interpretation placed on it. The general ARMA model was described in
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the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier
analysis) and statistical inference.[6][7] ARMA models were popularized by a 1970 book by
George E. P. Box and Jenkins, who expounded an iterative (Box–Jenkins) method for choosing
and estimating them.

µt =

p∑
i=1

ϕiµt−i +

q∑
i=1

θiϵt−i + ϵt

Finally, before fitting any of these mean models, we need to choose the appropriate lag
for the AR model using the autocorrelations. The auto-correlation function is a statistical
representation used to analyze the degree of similarity between a time series and a lagged
version of itself. This function allows the analyst to compare the current value of a data set
to its past value. In fact, it is determined by checking the partial autocorrelation plot. The
’plot pacf ’method is used to plot to assess the direct effect of past data on future data.

3.2.5 Volatility Models

The generalized autoregressive conditional heteroskedasticity (GARCH) process is a model to
estimate the volatility of financial markets. GARCH aims to minimize errors in forecasting by
accounting for errors in prior forecasting and enhancing the accuracy of ongoing predictions.
(For more knowledge on GARCH models see [FZ10])

Remark: For the sake of simplicity, we denote byσt the conditional mean σt+1|t.

ARCH(p) Model:

ARCH (Auto-regressive Conditional Heteoskedastic Model) is the simplest model in stochas-
tic variance modeling which was developed by Engle (1982).The model can be expressed as
follows:

σ2
t = ω +

∑p
i=1 αiϵ

2
t−i,

To assure σ2
t is asymptotically stationary random sequence, we can assume that

∑p
i=1 αi < 1

and ω, αi are parameters related to the model to be estimated.

GARCH (p, q) Model:

The GARCH Model, short for The Generalized Auto-Regressive Conditional Heteoskedastic
Model, is based on an infinite ARCH specification. Standard GARCH models assume that
positive and negative error terms have asymmetric effect on the volatility. The model can be
expressed as follows:

σ2
t = ω +

∑p
i=1 αiX

2
t−1 +

∑q
i=1 βiσ

2
t−i

where p is the order of the symmetric innovation and q is the order of the lagged (trans-
formed) conditional variance and and must both satisfy p, q ≥ 0 and ω, αi, βi are parameters
related to the model to be estimated.

EGARCH (p, q) Model:
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The exponential GARCH is another form of the GARCH model. E-GARCH model was
proposed by Nelson (1991) to overcome the weakness in GARCH handling of financial time se-
ries. In particular, to allow for asymmetric effects between positive and negative asset returns.

The E-GARCH model differs from GARCH in several ways. For instance, it used the
logged conditional variances to relax the positiveness constraint of model coefficients. Another
advantage, as pointed out by Nelson and Cao (1992), is that there are no restrictions on the
parameters. The model can be expressed as follows:

log(σ2
t ) = ω +

∑q
k=1 βkg(Zt−k +

∑p
k=1 αklog(σ

2
t−k))

where g(Zt) = θZt = λ(|Zt| − E(|Zt|)), σ2
t is the conditional variance and ω, β, α, θ, λ are

coefficients.

APARCH (p, q) Model:

The Asymmetric Power ARCH model is brought by Ding, Granger and Engle (1993). It
attempts to capture asymmetric responses of volatility to positive and negative ‘news shocks’,
the phenomenon known as the leverage effect. It can also well express the fat tails and excess
kurtosis. The general structure is:

σδ
t = ω +

∑p
i=1 αi(|ϵt−i| − γiϵt−i)

δ +
∑q

k=1 βkσ
δ
t−k

where ω, αi, γj , βi and δi are the parameters which are needed to be estimated and ϵt = σtYt

and Yt is a standard gaussian.

3.2.6 Model Selection

Before calculating the value-at-risk, we mainly use one metric to select the best GARCH
model. It is called the Akaike’s information criterion (AIC). This criterion was formulated by
the statistician Hirotugu Akaike in 1973. It is a good measure for testing the goodness of how
fit the model is mathematically. It measures the amount of information lost by training the
GARCH model (or ARMA model).

The AIC must be as low as possible. In other words, A model with a minimum value of
AIC is chosen to be the best fitting model among several competing models. Another crucial
consideration is that AIC is not intended to find a valid model. The best-fitting model is not
necessarily the actual model. Rather, it indicates that the model is superior than rival models
in terms of providing the closest approximation to the genuine model or reality. Naturally, the
best fitting model may change as a function of sample size, because model parameters may be
calculated more reliably with a larger sample size. In the factor-analytic context, for example,
a relevant inquiry might not be how many right factors there are, but how many factors can
be safely recovered given the data set at hand.

The AIC value of the model is the following:

AIC = 2k − 2 log(L̂)
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where k is the number of estimated parameters in the model and L̂ is the maximum value of
the likelihood function of the model.

Remark: We could also use another criterion for model selection which is called the
Bayesian information criterion (BIC), BIC = k log(n) − 2 log(L̂). Likewise, the model with
lower BIC values are generally preferred.

Example of GARCH VaR computation:
The first step in this methodology consists in fitting for example the model GARCH(1,1) to
find the constants α1 and β1 to compute the volatility that we include in the VaR computation
(2.5) along with a zero-conditional mean and a standard normal distribution quantile.

3.3 Variance-Covariance Method

The variance-covariance method uses the variances and covariances of assets and the arith-
metic returns of each asset for VaR calculation. It is hence a parametric method as it depends
on the parameters of the probability distribution of the returns.

The idea behind the variance-covariance is similar to the idea behind the historical. It uses
historical price movements (standard deviation, mean price) of a given equity or portfolio of
equities over a specified lookback period, and then uses probability theory to calculate the
maximum loss within your specified confidence interval. It is, in fact, a parametric method.
Variance refers to the spread of a data set around its mean value, while a covariance refers to
the measure of the directional relationship between two random variables.

The variance-covariance method assumes that asset returns are normally distributed around
the mean of the bell-shaped probability distribution. Assets may have tendency to move up
and down together or against each other. This method assumes that the standard deviation
of asset returns and the correlations between asset returns are constant over time. Let Yt+1 be
the arithmetic returns of the portfolio and Ŷt+1.

The general formula for the variance-covariance Value-at-Risk:

Yt+1 =
n∑

i=1

wi
tARi

t+1 (3.5)

µt+1|t := E(Yt+1|Ft) =
n∑

i=1

wi
t E(ARt+1|Ft)

σ2
t+1|t := V(Yt+1|Ft) =

(
w1 . . . wn

)

γ11,t γ12,t . . . γ1n,t
. . . . . . . . .

...

γi1,t γii,t
. . . γij,t

... . . .
. . .

...
γn1,t γn2,t . . . γnn,t


w1

...
wn

 (3.6)

We have the following hypothesis:

Yt+1 := µt+1|t + σt+1|tZt+1

Qα
t = µt+1|t + σt+1|t.q

α
t
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Where:

• Yt+1 represents the arithmetic returns of the portfolio between t and t+ 1.

• Zt+1 is an innovation process that follows a standard normal distribution.

• µt+1|t is the mean of the arithmetic returns of the portfolio,

• γij,t is the covariance between arithmetic returns of the asset i and j and the asset j, i.e
γij,t = Cov(ARi

t,ARj
t), 0 ≤ i ≤ j ≤ n, where ARi

t is the arithmetic return of the asset
i at time t,

• qαt is the quantile of the standard normal distribution with α probability,

• wi
t are the weights of the asset i at time t.

If a portfolio has multiple assets, its volatility is calculated using a matrix. A variance-
covariance matrix is computed for all the assets. Otherwise, if it’s a mono-asset one, i.e. n = 1,
σ2
t is simply the variance of the portfolio’s arithmetic returns.

For simplicity in our experiments, we assume that the covariance matrix (ρij,t)i,j is constant
over time, this is estimated empirically over the data. We could have used a multidimensional
GARCH modeling alternatively, this is left to future investigation.

3.3.1 VaR Formulation

Finally, since we are using the arithmetic returns, we need to inverse the VaR formula (2.4):
Let wi

t be the weight of the asset i at time t :

wi
t =

δitP
i
t∑n

j=1 δ
j
tP

j
t

(3.7)

where δit is the number of the asset i at time t and P i
t its value at time t.

qαt (−Vt+1) = qαt (−Vt+1 + Vt)− Vt

= qαt

(
−

n∑
j=1

δjtP
j
t

P j
t+1 − P j

t

P j
t

)
− Vt

= qαt

(
−

n∑
j=1

wj
tVtARj

t+1

)
− Vt

= Vt

(
qαt (−

n∑
j=1

wj
tARj

t+1)− 1

)

= Vt

(
−q1−α

t (
n∑

j=1

wj
tARj

t+1)− 1

)
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Thus:

V aRα
t (−Vt+1 + Vt) = Vt

(
−q1−α

t (
n∑

j=1

wj
tARj

t+1)

)
= Vt ×Qα

t (3.8)

Remark: We consider that Qα
t = −q1−α

t (
∑n

j=1w
j
tARj

t+1) as demonstrated in the VaR de-
composition section, equation (2.7).

3.3.2 Implementation Steps

The implementation steps to calculate daily VaRs of a portfolio are the following:

• Create a portfolio by fixing the quantities of the assets in the portfolio from January 2020
to June 2022.

• Fix a dataset of one year of prices from January 2020 to January 2021.

• Calculate the arithmetic returns of each asset in the portfolio.

• Create a covariance matrix based on the returns dataframe.

• Update the weights using the formula (3.7) that links the weights and the quantities of
the assets.

• Calculate the portfolio mean µt+1|t and standard deviation σt+1|t.

• Calculate the quantile normal standard distribution with a specified confidence interval
(99% and 95% risk level).

• Compute Qα
T .

• Estimate the value at risk (VaR) for the portfolio using the formula (3.8).

• Do it all over again to compute the second day VaR by moving the one year arithmetic
returns dataset to the next day, i.e {R1, ..., R365} −→ {R2, ..., R366}.

3.4 Kaiko Value-at-Risk

The Kaiko method is a proprietary method based on a non-parametric approach and is split
into two major principles: a normalization and stabilization of the data through pre-processing
the returns; and a stronger consideration of recent data compared to the past. The detail of
which remains confidential.
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Chapter 4

Backtesting

Once the VaR methodology is fixed, the challenging part lies in assessing the accuracy
of the measure and by extension. In fact, Financial risk model evaluation or backtesting is
a key part of the internal model’s approach to market risk management as laid out by the
Basle Commitee on Banking Supervision (1996). On the other hand, knowing the measure’s
accuracy is especially important for financial institutions, which use VaR to estimate how much
cash they need to reserve to cover potential losses. Any errors in the VaR model could indi-
cate that the institution is not holding enough reserves, which could result in significant losses
not only for the institution but also for its depositors, individual investors, and corporate clients.

That’s where backtesting comes in hand. It is in fact the most important part of the VaR
study. It is a way to gauge the effectiveness and the accuracy of the model implemented. Back-
testing in value-at-risk is used to compare the predicted losses with the ones that are actually
realised. A core paper is [Chr98] which describes the goodness of VaR estimations.

What’s more, we will refer to an event where the portfolio loss exceeds the VaR measure as
a violation. In fact, what’s important in backtesting is the clustering of violations. Each time
t that a forecast is performed, one can observe, after one day, the realization of -P&Lt+1 and
compute the violation indicator. It is defined by :

It+1 := 1−P&Lt+1≤V̂ aRα
t

(4.1)

The sequence of I (hit function) is made of 0 and 1, where the probability of having 1 is α.

This is formalized below:

Definition A sequence (V̂ aRα
t : t ≥ 0) of forecasts of V aRα

t (−P&Lt+1|Ft) is ideal if

P(−P&Lt+1 ≤ V̂ aRα
t |Ft) = α (4.2)

for any t. In fact, ideally, we should have: 1
m

∑m
t=1 It+1 = α where m is the number of daily

VaRs computed.

Christoffersen, the author of [Chr98] has an interesting characterisation of sequence of ideal
forecasts: A sequence (V aRα,t : t ≥ 0) of forecasts is ideal if and only if the sequence (It : t ≥ 0)
is i.i.d. with Bernoulli distribution with parameter α.

This leads to several ways to effectively backtest forecasts. This is performed over a data
set D of available data for the sequence of predictor V̂ aRαt.
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4.1 The Exceedance Ratio against confidence level

GenerallyGenerally speaking, the exceedance ratio is the frequency with which a random
process exceeds some critical value. In this case is it the number of times our losses surpass the
VaR.
For instance, we evaluate and expect that with 99% confidence, the worst daily loss will not
exceed 1% or be around 5% for the 95% VaR confidence level.

Over and above that, in order to have a clearer outlook of this metric, we also compute
the difference between the exceedance ratio and the theoritical one using a range of risk levels
from 10% to 99% and plot it against the confidence interval of the quantile determined in our
previous mathematical research to find the VaR model that stays within this interval and also
to assess the effectiveness of the value-at-risk model in every risk level.

Mathematically, the exceedance ratio is defined by:

ERD =
1

#D

∑
t∈D

It (4.3)

Under the ideal forecast assumption, it behaves (as #D is large) as a Gaussian distribution

with mean α and variance α(1−α)
#D

. It implies that one has :√
α(1− α)

#D
(EDD − α) /∈ [−1.96, 1.96] (4.4)

with approximate probability 5%

Remark: D is a dataset containing the dates corresponding to all the computed daily
VaRs. For instance, if we have computed 500 VaRs, we’d have 500 different dates.

4.2 The log-likelihood Test

For general reference on the log-likelihood tests see [LR].
Working under the assumption of a good forecast where I’s are i.i.d., the sequence of ID =
(It, t ∈ D) is a Bernoulli sequence with some fixed parameter: its likelihood (given the Bernoulli
parameter is β) equals

L(β, ID) := (1− β)n0,Dβn1,D

with:

n1,D =
∑

t∈D It ; n0,D = #D − n1,D

The loglikelihood ratio test writes:

LR := −2 log(L(α,ID)
L(α̂,ID)

),

where: α̂ is an estimate of the Bernoulli parameter α using the data set D, that is α̂ =
n1,D

#D
.

As the sample size #D gets large, LR follows a χ2-distribution, under the assumption of
good forecast.
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On the other hand, how do we verify that the value of the likelihood is a χ2(1) ?
Let S a random variable that follows a χ2(1) i.e S = X2 where X is a standard normal distri-
bution. Let a ≥ 0 and β ∈ (0, 1) be the risk level of the confidence interval and ϕ the CDF of
the standard normal distribution.

P(S ∈ [0, a]) = P(X ∈ [−
√
a,
√
a]) = ϕ(

√
a)− ϕ(−

√
a) = 2ϕ(

√
a)− 1 = 1− β

P(S ∈ [0, a]) = 1− β ⇐⇒ a = (ϕ−1(1− β

2
))2 (4.5)

In fact, if the value of the log-likelihood is within the interval [0, a] where a = ϕ−1(1−β/2)2 =
6.63489 and β = 0.01, we can accept that it follows a χ2(1) distribution, i.e we can accept that
the VaR forecast is an ideal forecast.
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Chapter 5

Results

One important point to mention is that all the portfolios tested have the same evolution
and the same changing regimes.

The different VaRs results show that:

• All the mono-asset portfolios have the same backtesting results.

• Each multi-asset portfolio has a different output in the backtests.

Consequently, we choose three different portfolios to represent the results:

• $10k mono-asset portfolio containing the crypto-currency ETHER (ETH).

• $10k multi-equally weighted- assets portfolio contaning Bitcoin (BTC), Ether (ETH),
Ripple (XRP) and Litecoin (LTC)

• $10k multi-equally weighted- assets portfolio contaning Polkadot (DOT), Chainlink (LINK),
Solana (SOL).

5.1 Legend

Let’s define some data displayed in the graphs and tables:

• Kaiko VaR is the VaR computed using the Kaiko approach.

• HS EGARCH ARX t is the VaR computed using an empirical quantile, EGARCH(1,1)
model on the volatility, AR model on the mean and innovation process that follows a t-
distribution.

• PM EGARCH ARX t is the VaR computed using a theoritical t-student quantile,
EGARCH(1,1) model on the volatility, AR model on the mean and innovation process
that follows a t-distribution.

• Arithmetic VaR is the VaR computed using historical simulation on arithmetic returns.

• Daily Variation VaR is the VaR computed using historical simulation on P&L.

• Variance covariance VaR is the VaR computed using variance-covariance method.
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Figure 5.1: Evolution of an equally weighted multi-assets portfolio (BTC, ETH, XRP and LTC)

• Let ENQ be the exceedance ratio normalised quantity, i.e.:

ENQ =

√
α(1− α)

#D
(ERD − α)

Let’s recall that ENQ ∈ [−1.96, 1.96] and the loglikelihood ∈ [0, 6.63]

5.2 GARCH Implementation Results

First, we notice that the returns are stationary from the auto-correlation graph which is
pretty expected since one of the ways to correct non-stationarity is principally by differentiating
the data, i.e. go from Vt to Vt+1−Vt , ∀t ≥ 0 or applying logarithms, i.e. go from Vt to log(

Vt+1

Vt
).

Generally speaking, to evaluate the order of the lags (p, q) of either an ARMA or a GARCH
model, we define and estimate regression models with ARMA(p, q) and garch(p,q) errors by
varying p = 1,..,n and q = 1,...,n. Store the optimized loglikelihood objective function value
for each model fit and calculate AIC for each model fit. The best fitting model is the regres-
sion model corresponding to the lowest AIC. However, one could also examines the plot 5.2 to
find the lag after which the partial autocorrelations function (PACF) are all within the confi-
dence interval. In this case, given any portfolio, none exceeds the interval. Therefore the lag
parameters of the ARMA and all the GARCH models are fixed to p = q = 1.

Secondly, the outputs of the ′arch model′ library mean model ARX (auto-regressive model
already implemented in the python library) and the ARMA mean model implemented exter-
nally are constant after few days and very close and this given any portfolio. Besides, there is
no big difference between the constant mean model where we compute the mean of the returns
training data and and AR, MA and ARMA mean models. Moreover, in the graph 5.4, we plot
the two GARCH VaRs with the losses. One that uses the empirical quantile and the second
that uses the theoritical. Giving any GARCH model, the two quantile approaches give the
same result: the parametric and semi-paramteric GARCH VaR coincide or almost coincide.
This means that the model of the quantile is irrelevant to the VaR computation.
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Figure 5.2: Auto-Correlations of the log-returns

Thirdly, given any portfolio, after testing all the combinations of the GARCH models with
the three distributions and conditional means, we conclude that based on the AIC results, the
model that suits all the portfolios the best is the EGARCH(1,1) with Autoregressive (AR)
mean and t-distribution. On the other hand we also notice on 5.3 that the GARCH model with
a normal distribution has the highest value of AIC, which means that the Gaussian approach
does by no means encapsulate the crypto-market.

Figure 5.3: AIC values for different GARCH models

5.3 Historical Simulation VaR Results

The historical simulation is well-known to be unable to capture the change in regimes of the
traditional market, let alone a crypto-market that has a massive ups and down movements.
Even if doesn’t make assumptions about distribution of returns (uses empirical distribution),
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Figure 5.4: Parametric and semi-parametric GARCH VaR with losses

it assumes the past will repeat itself. From the results in ??, 5.9 and 5.8, despite the cons, we
noticed that it doesn’t work on the daily variations but it works quite well on the arithmetic
returns as this latter stays within the confidence level of the quantile as seen in 5.2, 5.1 and
5.3. This, led us to think that the more stable data we have the more accurate the VaR will
be.

5.4 Variance-Covariance VaR Results

The assumptions of return normality and constant covariances and correlations between
assets in the portfolio may not hold true in real life. Moreover, the fact that the standard de-
viation is computed using historical returns of a certain period does not respond appropriately
or even sufficiently to changing market conditions just like historical simulation method.

On the other hand, generally speaking, the method variance-covariance has always been im-
plemented with the standard normal distribution. However, the AIC results from the GARCH
models led us to test the student distribution since the gaussian distribution seems to be the
one that has the highest AIC value. After testing it on multiple portfolios, the results were all
the same and not promising as we can see in the graphs 5.6 and 5.5. In fact, other than the
incapacity to capture the change in the regimes of the portfolio, the VaR with t-distribution
does not perform well compared to the norm-VaR as the daily losses are displayed quite far
from the daily VaR during 2021 for example.

5.5 Backtesting Results

From the Losses-VaR graphs of ETH portfolio ?? and multi-asset portfolio 5.9 and 5.8, we see
that the variance-covariance doesn’t perform as expected especially. In fact, it flattens after
2021. The end of this period marks the change of a regime. On the other hand, we see in the
graphs 5.12, 5.10 and 5.14 that in terms of the exceedance ratio of the variance - covariance
VaR is very far from the theoritical one for all risk levels whereas the GARCH-VaR and the
Arithmetic VaR ones stays within the confidence interval for every risk level starting from 40%
for the three portfolios. However, the Daily variation VaR performs very badly and is out of
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Figure 5.5: Variance-Covariance Value-At-Risk with standard Gaussian distribution

Figure 5.6: Variance-Covariance Value-At-Risk with t-distribution
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Figure 5.7: Graph of all the different Value-at-Risks displayed on the losses of the mono-asset
portfolio (ETH)

Figure 5.8: Graph of all the different Value-at-Risks displayed on the losses of the multi-asset
portfolio (BTC, ETH, XRP and LTC)

VaR 95 Exceedance Ratio (%) ENQ (×10−5) Log-likelihood
Kaiko VaR 5.56 4.30 0.52

Arithmetic VaR 6.04 7.97 1.74
Daily variation VaR 13.8 67 91

HS EGARCH ARX t VaR 4.19 -6.18 1.17
PM EGARCH ARX t VaR 4.19 -6.18 1.17

Var Covar VaR 15.90 83 132

Table 5.1: Numerical backtesting results for different VaR 95 methods on a multi-asset portfolio
(BTC, ETH, LTC and XRP)
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Figure 5.9: Graph of all the different Value-at-Risks displayed on the losses of the multi-asset
portfolio (LINK, DOT and SOL)

Figure 5.10: Exceedance Ratio on multi-assets portfolio (BTC, XRP, LTC and ETH)

Figure 5.11: Difference between exceedance Ratio and theoretical risk level on multi-assets
portfolio (BTC, XRP, LTC and ETH) using 2020 - 2021 training data.

the interval almost all the time. More importantly, the Kaiko VaR performs significantly well
for every risk level.
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Figure 5.12: Exceedance Ratio on ETH portfolio Backtesting using the 2020-2021 training data

Figure 5.13: Difference between Exceedance Ratio and the theoretical risk level on ETH port-
folio Backtesting using the 2020-2021 training data

Figure 5.14: Difference between exceedance Ratio and theoritical risk level on multi-asset port-
folio (DOT, LINK and SOL) Backtesting using the 2020-2021 training data

Besides, as the log-likelihood test results should be within the interval [0, 6.63] to have an
ideal forecast of the VaR. As we can see in the tables 5.2, 5.1, and 5.3, all the VaRs respect
this condition except the daily variation and the variance covariance Value-at-Risks.
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VaR 95 Exceedance Ratio (%) ENQ (×10−5) Log-likelihood

Kaiko VaR 7.14 19 4.68
Arithmetic VaR 6.59 14 2.66

Daily variation VaR 15.75 100 86.87
HS EGARCH ARX t VaR 6.41 14 2.1
PM EGARCH ARX t VaR 6.04 9.73 1.17

Var Covar VaR 19.23 132 139.7

Table 5.2: Numerical backtesting results for different VaR 95 methods on a mono-asset port-
folio (ETH).

VaR 95 Exceedance Ratio (%) ENQ (×10−5) Log-likelihood
Kaiko VaR 5.03 0.4 125

Arithmetic VaR 4.23 -8 0.49
Daily variation VaR 14.65 52 27.86

HS EGARCH ARX t VaR 3.17 23 3.70
PM EGARCH ARX t VaR 3.70 -14 1.463

Var Covar VaR 24.603 0.0021 163

Table 5.3: Numerical backtesting results for different VaR 95 methods on a multi-asset portfolio
(DOT, SOL and LINK)

Important result:

From the graph 5.15 where we only test the multi-assets portfolio containing BTC, ETH,
XRP and LTC, it is extremely interesting to notice that when we use the one year training
returns data from 2019 to 2020 to compute the different VaR instead of 2020 to 2021, the
Kaiko approach seems to be the only one to catch the changing regimes since 2019. Besides, we
can clearly see that even the Arithmetic VaR that seemed to work quite well is not adequate
anymore whereas the Kaiko VaR remains around the exceedance ratio confidence level.

Figure 5.15: Difference between exceedance Ratio and theortical risk level on multi-asset port-
folio (BTC, ETH, XRP and LTC) backtesting using the 2019-2020 training data
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Chapter 6

Use Cases

6.1 Introduction

We use the Kaiko methodology to compute the daily 95% risk level Value-At-Risk from
September 2021 to September 2022 because it captures an accurate value of the VaR compared
to the other methods. Besides, we use nine crypto-currencies ETH, LTC, BTC, MATIC, XRP,
DOT, SOL, ADA and LINK to create different portfolios.

In the crypto world, perhaps always, one of the biggest challenges facing investors is the
choice overload. In fact, when we find ourselves in a situation where we are faced with a myr-
iad of assets, investing becomes overwhelming and paralysing. Hence, in order to prevent a
situation of doubt and bad feelings when picking them, the best solution is to let the math do
the job for us. That’s where the value-at-risk comes in hand.

Notation: We denote by Pj the j-th portfolio.

6.2 Use Case 1: Minimizing the Value-at-Risk for a bet-

ter portfolio

Let’s suppose we set the risk budget for a $100k portfolio, and don’t want to lose more
than $10k one in every 20 days on average. We would set the VaR risk level to 95%, charted
in 6.1 with the daily losses, and monitor when the portfolio exceeds that $10k level. When the
portfolio VaR exceeds that level we would look to de-risk it so that the Value-at-Risk is under
that $10k threshold.

An interesting use of VaR would be to add different crypto-currencies on at a time to a
potential portfolio with an initial investment of $100k equally weighted between BTC/ETH for
example, except now we’re looking to add an extra asset but keeping the same initial investment
of $100k. The goal would be to identify the asset that allows us to minimise the value-at-risk
without much change in the return rate defined in formula 6.2.

The steps are simple:

• We consider 100K invested in an equally weighted portfolio containing BTC and ETH.

• We fix a start and an end for daily VaRs and let m be the number of days between these
two dates. In this case, m=365.
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Figure 6.1: $100K Portfolio

• We compute the average VaR with α = 95 risk level for the portfolio Pj (in this case a
BTC/ETH equally weighted portfolio) and the average returns Rj

m of the portfolio Pj,
i.e:

V̂ aRα,j
m :=

1

m

m∑
t=1

V aRα,j
t (6.1)

rjt :=
V j
t − V j

t−1

V j
t−1

+ 1

Rj
m :=

1

m

m∑
t=1

rjt × 100 (6.2)

where V̂ aRα,j
m is the average VaR of the portfolio Pj, V aRα,j

t is the VaR of the portfolio
Pj, R

j
m is the average return rate of the portfolio Pj.

• We create other $100k three-assets portfolios containing one new asset, additionally to
BTC and ETH. Since we have seven cryptos left, we’ll have seven other portfolios in
addition to ETH/BTC portfolio.

• We compute the average VaR and the return rate of all three-assets portofolios.

• We box plot the average VaR-Portfolio graph and display the dataframe containing the
average VaR and the return rates. See the graphs 6.3 and 6.4.

Firstly, in the graph 6.2, we see that all the new portfolios are correlated. Secondly, in
the chart 6.3, we test the seven other assets in addition to our BTC/ETH portfolio to see
which portfolio minimises the value-at-risk without changing the return rates. Thirdly, since
the return rates are very close, we only focus on the average VaR. Finally, the latter drops
from 7641 to 5958 as shown in the dataframe 6.4 for the portfolio containing the crypto ADA.
Therefore, the portfolio ETH/BTC/ADA seems to be the best choice.

6.3 Use Case 2: What is the best portfolio?

In this use-case, instead of adding assets to an existing portfolios, a procedure that some-
times may not add much value in the risk management, we compute the average VaR and
the returns rates of all the possible combination of multi-assets portfolios in order to get the
best one. Furthermore, one can always think that for every return, there is a portfolio that
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Figure 6.2: ETH/BTC $ 100k portfolio evolution along with the new potential $ 100k portfo-
lios.

Figure 6.3: Impact of new assets on the $100k initial portfolio’s VaR and return rate.

minimizes risk. Conversely, for each level of risk, one can find a portfolio that maximizes the
expected return. This notion reminds us of the Markowitz efficient frontier in the traditional
finance.

6.3.1 Equally weighted Portfolios

Let P be a set of all the possible combinations of the portfolios based on a list of nine crypto-
currencies. Thus, #P = 29 − 1 = 511.
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Figure 6.4: DataFrame containing the return rates and the average VaR for each equally
weighted portfolio.

Definition: Let the optimal surface be the set of the portfolios (Pj)1≤j≤P that verifies the
following two inequalities:

V̂ aRα,j
m ≤ V ARLIMIT

Rj
m ≥ RETURNLIMIT

V ARLIMIT = min
Pj∈P

(V aRα,j
m ) + σV̂ aRm

(6.3)

RETURNLIMIT = max
Pj∈P

(R̂j
m)− σR̂j

m
(6.4)

where σV̂ aRm
and σR̂m

are the standard deviation of respectively the average VaR and the re-
turn rates calculated using all the average var and average returns rates of all the combination
of the portfolios.

In this use case, the steps are simple:

• We consider 100K invested in all possible combinations of portfolios based on a range of
the nine crypto-currencies.

• We fix a portfolio Pj from the list of all the portfolios (511 portfolios).

• We fix a start and an end for daily VaRs and let m be the number of days between these
two dates.

• We compute the average VaR V̂ aRα,j
m with α = 95 risk level in 6.1 and the average returns

Rj
m of the portfolio Pj in formula 6.2.

• We scatter plot an average VaR-return rate graph 6.5.

• We extract the portfolios within the optimal surface.
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Definition: We denote by V the couple (V aRα,j
m , Rj

m)j containing the average VaRs and
the returns rates of all portfolios (Pj)j∈{1,...,502}. Let Regulation on V be the action of setting the
optimal surface V. Two Regulations on V is doing one Regulation on V and then another one
on Ṽ a subset of V . This would minimise the optimal surface and have fewer optimal portfolios.

The challenging part about this study is the choice of the optimal surface and it all depends
on the investor, whether they are adopting a risk prevention or a risk taking mentality. In other
words, is the investor more interested on how much he could gain and thus focus more on the
return rates ? Or is he more interested in how much he could loose by paying more attention
on the value-at-risk ?

Figure 6.5: First view of the average VaR - Return rates scatter plot of all the possible $100k
equally weighted portfolios (one Regulation was not enough as we have a lot of portfolios
underneath the first var limit).

From the chart 6.6, we notice that all return rates are very close which makes this indicator
uninteresting in terms of choosing the best portfolio. Besides, cryptos like DOT, ETH, SOL
and MATIC are not included in the portfolios of the optimal surface. Finally, we conclude that
the best portfolio is the equally weighted portfolio containing BTC and ADA that have the
lowest average VaR that equals $3610.91.

6.3.2 Optimised Weighted Portfolios

In this use case, we optimise the weights of the portfolios instead of using equally weighted
portfolios. In fact, one would think about minimising the VaR on the weights. However, the
VaR is not convex (see the graph 6.7) with respect to the weights of the portfolio. Therefore,
we can’t choose the best weights of its assets by minimising the value-at-risk, i.e. the following
expression 6.3.2 is difficult to assess:

min
wi∈(0,1)

V aRα
t (Xt+1) = min

wi∈(0,1)
Vt

(
qαt

(
−

n∑
i=1

wiARt+1

)
+ 1

)
,

n∑
i=1

wi = 1

However, we can think about optimising the asset’s weight of a given portfolio using the
Markowitz approach where we, instead, minimise the variance of the portfolio’s arithmetic
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Figure 6.6: Close view of the optimal surface of the graph 6.5 after two regulations on the
dataframe of the average VaRs.

returns ARt, i.e. minwi∈(0,1),
∑n

i=1 wi=1 V(ARt).

ARt =
n∑

i=1

wiARi
t ,

n∑
i=1

wi = 1, wi ∈ (0, 1) (6.5)

V(Rt) =
(
w1 . . . wn

)

γ11,t γ12,t . . . γ1n,t
. . . . . . . . .

...

γi1,t γii,t
. . . γij,t

... . . .
. . .

...
γn1,t γn2,t . . . γnn,t


w1

...
wn

 (6.6)

where ARi
t is the arithmetic returns of the asset i, wi its weight and n the number of the

asset in the portfolio, γij,t is the covariance between arithmetic returns of the asset i and the
asset j, i.e γij,t = Cov(ARi

t,ARj
t), 0 ≤ i ≤ j ≤ n.

Remarks:

• We use (0.001, 1) instead of (0, 1) as the boundary of the weights to make sure to include
all the possible portfolios. In fact, it is possible to be unable to minimise on the constraint
wi ∈ (0, 1) and thus have wi = 0 for a certain asset i. Obviously, the question that may
be raised is whether or not we can consider an asset that has a weight of 1% negligible
comparing the other assets. This is a probable approah left to the trader. Here the goal
is only to cover every possible portfolio.

• In this case we only use the multi-assets portfolios because of the weight optimisation.
Hence, we have 2n − 1 − n = 502, where n is the number of the existing assets (here
n = 9).

• The steps are similar to the previous study. The only thing that is different is the weights
of the portfolios. Here, instead of equally weighted portfolios, each portfolio Pj has its
own optimised weight vector.
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Figure 6.7: Here we display a Kaiko VaR with 95% risk level of the day 2021-09-03 using
multi-asset portfolios containing ETH and BTC generated with different weights (w, 1 − w)
where w ∈ (0, 1). In fact, this is a counterexample for the non-convexity of the VaR with
respect to the weight w.

From the numerical results of the returns rates in the dataframe 6.4 and in the graph 6.5,
we conclude that the returns rates are not very appealing to the use case. Thus, we only use the
V ARLIMIT in the formula 6.3 to set the optimal surface. Besides, it is necessary to do two
or three Regulations to extract the best portfolios since we have a myriad of them (maximum
of 30 out of 511 portfolios).

In the graph 6.10, we see that LTC, XRP and LINK are the most common cryptos in the
optimal surface. Moreover, we notice that SOL is nowhere in the optimal portfolios and the
crypto ETH is present in only one portfolio. Finally, the portfolio that has the lowest VaR is
the one containing XRP (weight of 26%) and LINK (weight of 74 %). This is the best one.
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Figure 6.8: First view of the average VaR - Return rates graph of all the possible $100k weight
optimised portfolios

Figure 6.9: Second view of the average VaR - Return rates graph of all the possible $100k
portfolios with optimised weights after another average VaR limit regulation.
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Figure 6.10: Close view on the optimal portfolios of the graph 6.9 in the average VaR - Return
rates graph

Figure 6.11: The optimised weights for the portofolios within the optima surface.
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Chapter 7

Conclusion & Future Work

All things considered, we can say that despite the lack of the historical data for the back-
tests, among all the VaR methodologies implemented, where most of them are slow to react to
changing market environments, the Kaiko approach is the only one that captures an accurate
value of the value-at-risk.

Furthermore, the study of different Value-at-Risk methodologies led us to conclude that the
stabilisation of the returns is a mandatory step to have an ideal forecast of the VaR. In fact,
a deep study of the returns of the crypto-currencies would allow us to better evaluate their
risk and find a model to simulate them and eventually try another method to compute the
VaR such as the Monte Carlo approach or the copula method. This latter has been studied
during a certain period of my internship but was not prioritized and could be something to do
in the future. In addition to that, another possible future work would be to compute other risk
metrics such as the expected shortfall also so-called the conditional value-at-risk (CVaR).
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